Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite

O objetivo deste trabalho foi avaliar a eficácia da aplicação de modelos de análise de regressão e redes neurais artificiais (RNAs) na predição do volume de madeira e da biomassa acima do solo, da vegetação arbórea em área de cerradão. Volume de madeira e biomassa foram estimados com equações alomét...

Full description

Main Authors: Miguel, Eder Pereira, Rezende, Alba Valéria, Leal, Fabrício Assis, Matricardi, Eraldo Aparecido Trondoli, Vale, Ailton Teixeira do, Pereira, Reginaldo Sérgio
Format: Artigo
Language: Portuguese
Published: Embrapa Informação Tecnológica - Pesquisa Agropecuária Brasileira 2017
Subjects:
Online Access: http://repositorio.unb.br/handle/10482/29559
http://dx.doi.org/10.1590/S0100-204X2015000900012
Tags: Add Tag
No Tags, Be the first to tag this record!
id ir-10482-29559
recordtype dspace
spelling ir-10482-295592019-08-15T11:26:48Z Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite Artificial neural networks for modeling wood volume and aboveground biomass of tall Cerrado using satellite data Miguel, Eder Pereira Rezende, Alba Valéria Leal, Fabrício Assis Matricardi, Eraldo Aparecido Trondoli Vale, Ailton Teixeira do Pereira, Reginaldo Sérgio Índice de vegetação Inventário florestal Produção Regressão Sensoriamento remoto O objetivo deste trabalho foi avaliar a eficácia da aplicação de modelos de análise de regressão e redes neurais artificiais (RNAs) na predição do volume de madeira e da biomassa acima do solo, da vegetação arbórea em área de cerradão. Volume de madeira e biomassa foram estimados com equações alométricas desenvolvidas para a área de estudo. Os índices de vegetação, como variáveis preditoras, foram estimados a partir de imagens do sensor LISS-III, e a área basal foi determinada por medições na floresta. A precisão das equações foi verificada pela correlação entre os valores estimados e observados (r), erro-padrão da estimativa (Syx) e gráfico residual. As equações de regressão para o volume de madeira total e do fuste (0,96 e 0,97 para r, e 11,92 e 9,72% para Syx, respectivamente) e para a biomassa (0,91 e 0,92 para r, e 22,73 e 16,80% para Syx, respectivamente) apresentaram bons ajustes. As redes neurais também apresentaram bom ajuste com o volume de madeira (0,99 e 0,99 para r, e 4,93 e 4,83% para Syx) e a biomassa (0,97 e 0,98 r, e 8,92 e 7,96% para Syx, respectivamente). A área basal e os índices de vegetação foram eficazes na estimativa do volume de madeira e biomassa para o cerradão. Os valores reais de volume de madeira e biomassa não diferiram estatisticamente dos valores estimados pelos modelos de regressão e redes neurais (χ2ns); contudo, as RNAs são mais acuradas. The objective of this work was to evaluate the effectiveness of regression models and artificial neural networks (ANNs) in predicting wood volume and aboveground biomass of arboreal vegetation in area of tall Cerrado (a forest, savanna-like vegetation). Wood volume and biomass were estimated with allometric equations developed for the studied area. The vegetation indices, as predictor variables, were estimated from LISS-III sensor imagery, and the basal area was determined from field measurements. Equation precision was verified by the correlation between estimated and observed values (r), standard error of estimate (Syx), and by the residual plot. The regression equations for total wood volume and bole volume (0.96 and 0.97 for r, and 11.92 and 9.72% for Syx, respectively), as well as for aboveground biomass (0.91 and 0.92 for r, and 22.73 and 16.80% for Syx, respectively) showed good adjustments. The neural networks also showed good adjustments for both wood volume (0.99 and 0,99 for r, and 4.93 and 4.83% for Syx) and biomass (0.97 and 0.98 for r, and 8.92 and 7.96% for Syx, respectively). Basal area and vegetation indices were effective in estimating wood volume and biomass for the tall cerrado vegetation. Measured wood volume and aboveground biomass did not differ statistically from the predicted values by both the regression models and neural networks (χ2ns); however, the ANNs are more accurate. 2017-12-07T05:11:41Z 2017-12-07T05:11:41Z 2015-09 Artigo MIGUEL, Eder Pereira et al. Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite. Pesquisa Agropecuária Brasileira, Brasília, v. 50, n. 9, p. 829-839, set. 2015. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2015000900829&lng=en&nrm=iso>. Acesso em: 8 maio 2018. doi: http://dx.doi.org/10.1590/S0100-204X2015000900012. http://repositorio.unb.br/handle/10482/29559 http://dx.doi.org/10.1590/S0100-204X2015000900012 pt Acesso Aberto Pesquisa Agropecuária Brasileira - This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY NC 4.0). Fonte: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2015000900829&lng=en&nrm=iso. Acesso em: 8 maio 2018. application/pdf Embrapa Informação Tecnológica - Pesquisa Agropecuária Brasileira
institution REPOSITORIO UNB
collection REPOSITORIO UNB
language Portuguese
topic Índice de vegetação
Inventário florestal
Produção
Regressão
Sensoriamento remoto
spellingShingle Índice de vegetação
Inventário florestal
Produção
Regressão
Sensoriamento remoto
Miguel, Eder Pereira
Rezende, Alba Valéria
Leal, Fabrício Assis
Matricardi, Eraldo Aparecido Trondoli
Vale, Ailton Teixeira do
Pereira, Reginaldo Sérgio
Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
description O objetivo deste trabalho foi avaliar a eficácia da aplicação de modelos de análise de regressão e redes neurais artificiais (RNAs) na predição do volume de madeira e da biomassa acima do solo, da vegetação arbórea em área de cerradão. Volume de madeira e biomassa foram estimados com equações alométricas desenvolvidas para a área de estudo. Os índices de vegetação, como variáveis preditoras, foram estimados a partir de imagens do sensor LISS-III, e a área basal foi determinada por medições na floresta. A precisão das equações foi verificada pela correlação entre os valores estimados e observados (r), erro-padrão da estimativa (Syx) e gráfico residual. As equações de regressão para o volume de madeira total e do fuste (0,96 e 0,97 para r, e 11,92 e 9,72% para Syx, respectivamente) e para a biomassa (0,91 e 0,92 para r, e 22,73 e 16,80% para Syx, respectivamente) apresentaram bons ajustes. As redes neurais também apresentaram bom ajuste com o volume de madeira (0,99 e 0,99 para r, e 4,93 e 4,83% para Syx) e a biomassa (0,97 e 0,98 r, e 8,92 e 7,96% para Syx, respectivamente). A área basal e os índices de vegetação foram eficazes na estimativa do volume de madeira e biomassa para o cerradão. Os valores reais de volume de madeira e biomassa não diferiram estatisticamente dos valores estimados pelos modelos de regressão e redes neurais (χ2ns); contudo, as RNAs são mais acuradas.
format Artigo
author Miguel, Eder Pereira
Rezende, Alba Valéria
Leal, Fabrício Assis
Matricardi, Eraldo Aparecido Trondoli
Vale, Ailton Teixeira do
Pereira, Reginaldo Sérgio
author_sort Miguel, Eder Pereira
title Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
title_short Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
title_full Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
title_fullStr Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
title_full_unstemmed Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
title_sort redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
publisher Embrapa Informação Tecnológica - Pesquisa Agropecuária Brasileira
publishDate 2017
url http://repositorio.unb.br/handle/10482/29559
http://dx.doi.org/10.1590/S0100-204X2015000900012
_version_ 1642398387738247168
score 13.657419