Geographically weighted logistic regression applied to Credit Scoring models
Este estudo utilizou dados reais de uma instituição financeira nacional referentes a operações de Crédito Direto ao Consumidor (CDC), concedidas a clientes domiciliados no Distrito Federal (DF), para a construção de modelos de credit scoring utilizando as técnicas Regressão Logística e Regressão Log...
Main Authors: | Albuquerque, Pedro Henrique Melo, Medina, Fabio Augusto Scalet, Silva, Alan Ricardo da |
---|---|
Format: | Artigo |
Language: | English Portuguese |
Published: |
Universidade de São Paulo, Faculdade de Economia, Administração e Contabilidade, Departamento de Contabilidade e Atuária
2018
|
Subjects: | |
Online Access: |
http://repositorio.unb.br/handle/10482/30839 http://dx.doi.org/10.1590/1808-057x201703760 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: |
Este estudo utilizou dados reais de uma instituição financeira nacional referentes a operações de Crédito Direto ao Consumidor (CDC), concedidas a clientes domiciliados no Distrito Federal (DF), para a construção de modelos de credit scoring utilizando as técnicas Regressão Logística e Regressão Logística Geograficamente Ponderada [Geographically Weighted Logistic Regression] (GWLR). Os objetivos foram: verificar se os fatores que influenciam o risco de crédito diferem de acordo com a localização geográfica do tomador; comparar o conjunto de modelos estimados via GWLR frente ao modelo global estimado via Regressão Logística, em termos de capacidade de previsão e perdas financeiras para a instituição; e verificar a viabilidade da utilização da técnica GWLR para desenvolver modelos de credit scoring. As métricas utilizadas para comparar os modelos desenvolvidos por meio das duas técnicas foram o critério informacional AICc, a acurácia dos modelos, o percentual de falsos positivos, a soma do valor da dívida dos falsos positivos e o valor monetário esperado de inadimplência da carteira frente ao valor monetário de inadimplência observado. Os modelos estimados para cada região do DF se mostraram distintos em suas variáveis e coeficientes (parâmetros), concluindo-se que o risco de crédito foi influenciado de maneira distinta em cada região do estudo. As metodologias Regressão Logística e GWLR apresentaram resultados bem próximos, em termos de capacidade de previsão e perdas financeiras para a instituição, e o estudo demonstrou a viabilidade da utilização da técnica GWLR para desenvolver modelos de credit scoring para o público-alvo do estudo. |
---|