Techniques to facilitate probabilistic software analysis in real-world programs
Probabilistic software analysis aims at quantifying how likely a target event is to occur, given a probabilistic characterization of the behavior of a program or of its execution environment. Examples of target events may include an uncaught exception, the invocation of a certain method, or the a...
Main Author: | BORGES, Mateus Araújo |
---|---|
Other Authors: | D'AMORIM, Marcelo Bezerra |
Format: | masterThesis |
Language: | por |
Published: |
Universidade Federal de Pernambuco
2016
|
Subjects: | |
Online Access: |
https://repositorio.ufpe.br/handle/123456789/14932 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
ir-123456789-14932 |
---|---|
recordtype |
dspace |
spelling |
ir-123456789-149322019-10-26T00:24:03Z Techniques to facilitate probabilistic software analysis in real-world programs BORGES, Mateus Araújo D'AMORIM, Marcelo Bezerra http://lattes.cnpq.br/9394743532378351 http://lattes.cnpq.br/3762670242328435 Execução Simbólica Amostragem de Monte Carlo Análise Probabilística Testes Probabilistic software analysis aims at quantifying how likely a target event is to occur, given a probabilistic characterization of the behavior of a program or of its execution environment. Examples of target events may include an uncaught exception, the invocation of a certain method, or the access to confidential information. The technique collects constraints on the inputs that lead to the target events and analyzes them to quantify how likely it is for an input to satisfy the constraints. Current techniques either handle only linear constraints or only support continuous distributions using a “discretization” of the input domain, leading to imprecise and costly results. This work proposes an iterative distribution-aware sampling approach to support probabilistic symbolic execution for arbitrarily complex mathematical constraints and continuous input distributions. We follow a compositional approach, where the symbolic constraints are decomposed into sub-problems whose solution can be solved independently. At each iteration the convergence rate of the computation is increased by automatically refocusing the analysis on estimating the sub-problems that mostly affect the accuracy of the results, as guided by three different ranking strategies. Experiments on publicly available benchmarks show that the proposed technique improves on previous approaches in terms of scalability and accuracy of the results. FACEPE Análise Probabilística de Software (PSA) visa a quantificar a probabilidade de que um evento de interesse seja alcançado durante a execução de um programa, dada uma caracterização probabilística do comportamento do programa ou do seu ambiente de execução. O evento de interesse pode ser, por exemplo, uma exceção não capturada, a invocação de um método específico, ou o acesso à informação confidencial. A técnica coleta restrições sobre as entradas que levam para os eventos de interesse e as analisa para quantificar o quão provável que uma entrada satisfaça essas restrições. Técnicas atuais ou suportam apenas restrições lineares, ou suportam distribuições contínuas utilizando uma "discretização" do domínio de entrada, levando a resultados imprecisos e caros. Este trabalho apresenta uma abordagem iterativa, composicional e sensível às distribuições para suportar o uso de PSA em restrições com operações matemáticas arbitrariamente complexas e distribuições contínuas de entrada. Nossa abordagem composicional permite que as restrições sejam decompostas em subproblemas que podem ser resolvidos independentemente. Em cada iteração a análise é reorientada automaticamente para a estimação dos subproblemas que mais afetam a precisão dos resultados, assim aumentando a taxa de convergência da computação. Esta reorientação é guiada por três diferentes estratégias de ranqueamento. Experimentos em programas publicamente disponíveis mostram que a técnica proposta é melhor do que abordagens existentes em termos de escalabilidade e precisão. 2016-01-19T17:42:17Z 2016-01-19T17:42:17Z 2015-04-24 masterThesis https://repositorio.ufpe.br/handle/123456789/14932 por Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ application/pdf Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
institution |
REPOSITORIO UFPE |
collection |
REPOSITORIO UFPE |
language |
por |
topic |
Execução Simbólica Amostragem de Monte Carlo Análise Probabilística Testes |
spellingShingle |
Execução Simbólica Amostragem de Monte Carlo Análise Probabilística Testes BORGES, Mateus Araújo Techniques to facilitate probabilistic software analysis in real-world programs |
description |
Probabilistic software analysis aims at quantifying how likely a target event is to occur,
given a probabilistic characterization of the behavior of a program or of its execution environment.
Examples of target events may include an uncaught exception, the invocation of a certain method,
or the access to confidential information. The technique collects constraints on the inputs that
lead to the target events and analyzes them to quantify how likely it is for an input to satisfy the
constraints. Current techniques either handle only linear constraints or only support continuous
distributions using a “discretization” of the input domain, leading to imprecise and costly results.
This work proposes an iterative distribution-aware sampling approach to support probabilistic
symbolic execution for arbitrarily complex mathematical constraints and continuous
input distributions. We follow a compositional approach, where the symbolic constraints are
decomposed into sub-problems whose solution can be solved independently. At each iteration
the convergence rate of the computation is increased by automatically refocusing the analysis
on estimating the sub-problems that mostly affect the accuracy of the results, as guided by
three different ranking strategies. Experiments on publicly available benchmarks show that the
proposed technique improves on previous approaches in terms of scalability and accuracy of the
results. |
author2 |
D'AMORIM, Marcelo Bezerra |
format |
masterThesis |
author |
BORGES, Mateus Araújo |
author_sort |
BORGES, Mateus Araújo |
title |
Techniques to facilitate probabilistic software analysis in real-world programs |
title_short |
Techniques to facilitate probabilistic software analysis in real-world programs |
title_full |
Techniques to facilitate probabilistic software analysis in real-world programs |
title_fullStr |
Techniques to facilitate probabilistic software analysis in real-world programs |
title_full_unstemmed |
Techniques to facilitate probabilistic software analysis in real-world programs |
title_sort |
techniques to facilitate probabilistic software analysis in real-world programs |
publisher |
Universidade Federal de Pernambuco |
publishDate |
2016 |
url |
https://repositorio.ufpe.br/handle/123456789/14932 |
_version_ |
1648654697217654784 |
score |
13.657419 |