Reconhecimento facial em imagens de baixa resolução

Tem crescido o uso de sistemas computacionais para reconhecimento de pessoas por meio de dados biométricos, consequentemente os métodos para realizar o reconhecimento tem evoluído. A biometria usada no reconhecimento pode ser face, voz, impressão digital ou qualquer característica física capaz de...

Full description

Main Author: SILVA, José Ivson Soares da
Other Authors: REN, Tsang Ing
Format: masterThesis
Language: por
Published: Universidade Federal de Pernambuco 2016
Subjects:
Online Access: https://repositorio.ufpe.br/handle/123456789/16367
Tags: Add Tag
No Tags, Be the first to tag this record!
id ir-123456789-16367
recordtype dspace
spelling ir-123456789-163672018-11-21T22:21:39Z Reconhecimento facial em imagens de baixa resolução SILVA, José Ivson Soares da REN, Tsang Ing CAVALCANTI, George Darmiton da Cunha http://lattes.cnpq.br/3084134533707587 Reconhecimento Facial Baixa Resolução Extração de Características Face Recognition Low Resolution Feature Extraction Tem crescido o uso de sistemas computacionais para reconhecimento de pessoas por meio de dados biométricos, consequentemente os métodos para realizar o reconhecimento tem evoluído. A biometria usada no reconhecimento pode ser face, voz, impressão digital ou qualquer característica física capaz de distinguir as pessoas. Mudanças causadas por cirurgias, envelhecimento ou cicatrizes, podem não causar mudanças significativas nas características faciais tornando possível o reconhecimento após essas mudanças de aparência propositais ou não. Por outro lado tais mudanças se tornam um desafio para sistemas de reconhecimento automático. Além das mudanças físicas há outros fatores na obtenção da imagem que influenciam o reconhecimento facial como resolução da imagem, posição da face em relação a câmera, iluminação do ambiente, oclusão, expressão. A distância que uma pessoa aparece na cena modifica a resolução da região da sua face, o objetivo de sistemas direcionados a esse contexto é que a influência da resolução nas taxas de reconhecimento seja minimizada. Uma pessoa mais distante da câmera tem sua face na imagem numa resolução menor que uma que esteja mais próxima. Sistemas de reconhecimento facial têm um menor desempenho ao tratar imagens faciais de baixa resolução. Uma das fases de um sistema de reconhecimento é a extração de características, que processa os dados de entrada e fornece um conjunto de informações mais representativas das imagens. Na fase de extração de características os padrões da base de dados de treinamento são recebidos numa mesma dimensão, ou seja, no caso de imagens numa mesma resolução. Caso as imagens disponíveis para o treinamento sejam de resoluções diferentes ou as imagens de teste sejam de resolução diferente do treinamento, faz-se necessário que na fase de pré-processamento haja um tratamento de resolução. O tratamento na resolução pode ser aplicando um aumento da resolução das imagens menores ou redução da resolução das imagens maiores. O aumento da resolução não garante um ganho de informação que possa melhorar o desempenho dos sistemas. Neste trabalho são desenvolvidos dois métodos executados na fase de extração de características realizada por Eigenface, os vetores de características são redimensionados para uma nova escala menor por meio de interpolação, semelhante ao que acontece no redimensionamento de imagens. No primeiro método, após a extração de características, os vetores de características e as imagens de treinamento são redimensionados. Então, as imagens de treinamento e teste são projetadas no espaço de características pelos vetores de dimensão reduzida. No segundo método, apenas os vetores de características são redimensionados e multiplicados por um fator de compensação. Então, as imagens de treinamento são projetadas pelos vetores originais e as imagens de teste são projetadas pelos vetores reduzidos para o mesmo espaço. Os métodos propostos foram testados em 4 bases de dados de reconhecimento facial com a presença de problemas de variação de iluminação, variação de expressão facial, presença óculos e posicionamento do rosto. FADE In the last decades the use of computational systems to recognize people by biometric data is increasing, consequently the efficacy of methods to perform recognition is improving. The biometry used for recognition can be face, voice, fingerprint or other physical feature that enables the distiction of different persons. Facial changes caused by surgery, aging or scars, does not necessarily causes significant changes in facial features. For a human it is possible recognize other person after these interventions of the appearance. On the other hand, these interventions become a challenge to computer recognition systems. Beyond the physical changes there are other factors in aquisition of an image that influence the face recognition such as the image resolution, position between face and camera, light from environment, occlusions and variation of facial expression. The distance that a person is at image aquisition changes the resolution of face image. The objective of systems for this context is to minimize the influence of the image resolution for the recognition. A person more distant from the camera has the image of the face in a smaller resolution than a person near the camera. Face recognition systems have a poor performance to analyse low resolution image. One of steps of a recognition system is the features extraction that processes the input data so provides more representative images. In the features extraction step the images from the training database are received at same dimension, in other words, to analyse the images they have the same resolution. If the training images have different resolutions of test images it is necessary a preprocessing to normalize the image resolution. The preprocessing of an image can be to increase the resolution of small images or to reduce the resolution of big images. The increase resolution does not guarantee that there is a information gain that can improves the performance of the recognition systems. In this work two methods are developed at features extraction step based on Eigenface. The feature vectors are resized to a smaller scale, similar to image resize. In first method, after the feature extraction step, the feature vectors and the training images are resized. Then the training and test images are projected to feature space by the resized feature vectors. In second method, only the feature vectors are resized and multiplied by a compensation factor. The training images are projected by original feature vectors and the test images are projected by resized feature vectors to the same space. The proposed methods were tested in 4 databases of face recognition with presence of light variation, variation of facial expression, use of glasses and face position. 2016-04-07T12:14:52Z 2016-04-07T12:14:52Z 2015-02-24 masterThesis https://repositorio.ufpe.br/handle/123456789/16367 por Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao
institution REPOSITORIO UFPE
collection REPOSITORIO UFPE
language por
topic Reconhecimento Facial
Baixa Resolução
Extração de Características
Face Recognition
Low Resolution
Feature Extraction
spellingShingle Reconhecimento Facial
Baixa Resolução
Extração de Características
Face Recognition
Low Resolution
Feature Extraction
SILVA, José Ivson Soares da
Reconhecimento facial em imagens de baixa resolução
description Tem crescido o uso de sistemas computacionais para reconhecimento de pessoas por meio de dados biométricos, consequentemente os métodos para realizar o reconhecimento tem evoluído. A biometria usada no reconhecimento pode ser face, voz, impressão digital ou qualquer característica física capaz de distinguir as pessoas. Mudanças causadas por cirurgias, envelhecimento ou cicatrizes, podem não causar mudanças significativas nas características faciais tornando possível o reconhecimento após essas mudanças de aparência propositais ou não. Por outro lado tais mudanças se tornam um desafio para sistemas de reconhecimento automático. Além das mudanças físicas há outros fatores na obtenção da imagem que influenciam o reconhecimento facial como resolução da imagem, posição da face em relação a câmera, iluminação do ambiente, oclusão, expressão. A distância que uma pessoa aparece na cena modifica a resolução da região da sua face, o objetivo de sistemas direcionados a esse contexto é que a influência da resolução nas taxas de reconhecimento seja minimizada. Uma pessoa mais distante da câmera tem sua face na imagem numa resolução menor que uma que esteja mais próxima. Sistemas de reconhecimento facial têm um menor desempenho ao tratar imagens faciais de baixa resolução. Uma das fases de um sistema de reconhecimento é a extração de características, que processa os dados de entrada e fornece um conjunto de informações mais representativas das imagens. Na fase de extração de características os padrões da base de dados de treinamento são recebidos numa mesma dimensão, ou seja, no caso de imagens numa mesma resolução. Caso as imagens disponíveis para o treinamento sejam de resoluções diferentes ou as imagens de teste sejam de resolução diferente do treinamento, faz-se necessário que na fase de pré-processamento haja um tratamento de resolução. O tratamento na resolução pode ser aplicando um aumento da resolução das imagens menores ou redução da resolução das imagens maiores. O aumento da resolução não garante um ganho de informação que possa melhorar o desempenho dos sistemas. Neste trabalho são desenvolvidos dois métodos executados na fase de extração de características realizada por Eigenface, os vetores de características são redimensionados para uma nova escala menor por meio de interpolação, semelhante ao que acontece no redimensionamento de imagens. No primeiro método, após a extração de características, os vetores de características e as imagens de treinamento são redimensionados. Então, as imagens de treinamento e teste são projetadas no espaço de características pelos vetores de dimensão reduzida. No segundo método, apenas os vetores de características são redimensionados e multiplicados por um fator de compensação. Então, as imagens de treinamento são projetadas pelos vetores originais e as imagens de teste são projetadas pelos vetores reduzidos para o mesmo espaço. Os métodos propostos foram testados em 4 bases de dados de reconhecimento facial com a presença de problemas de variação de iluminação, variação de expressão facial, presença óculos e posicionamento do rosto.
author2 REN, Tsang Ing
format masterThesis
author SILVA, José Ivson Soares da
author_sort SILVA, José Ivson Soares da
title Reconhecimento facial em imagens de baixa resolução
title_short Reconhecimento facial em imagens de baixa resolução
title_full Reconhecimento facial em imagens de baixa resolução
title_fullStr Reconhecimento facial em imagens de baixa resolução
title_full_unstemmed Reconhecimento facial em imagens de baixa resolução
title_sort reconhecimento facial em imagens de baixa resolução
publisher Universidade Federal de Pernambuco
publishDate 2016
url https://repositorio.ufpe.br/handle/123456789/16367
_version_ 1641986984539848704
score 13.657419