Combinação de kernels para predição de interações em redes biológicas
Redes droga-proteína têm recebido bastante atenção nos últimos anos, dada sua relevância para a inovação farmacêutica e produção de novos fármacos. Muitas abordagens in silico distintas para predição de interações droga-proteína têm sido propostas, muitas das quais baseadas em uma classe particul...
Main Author: | NASCIMENTO, André Câmara Alves do |
---|---|
Other Authors: | PRUDÊNCIO, Ricardo Bastos Cavalcante |
Format: | doctoralThesis |
Language: | por |
Published: |
Universidade Federal de Pernambuco
2016
|
Subjects: | |
Online Access: |
https://repositorio.ufpe.br/handle/123456789/16781 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
ir-123456789-16781 |
---|---|
recordtype |
dspace |
spelling |
ir-123456789-167812018-11-07T22:42:49Z Combinação de kernels para predição de interações em redes biológicas NASCIMENTO, André Câmara Alves do PRUDÊNCIO, Ricardo Bastos Cavalcante COSTA FILHO, Ivan Gesteira Inteligência artificial Aprendizado de máquina Redes droga-proteína têm recebido bastante atenção nos últimos anos, dada sua relevância para a inovação farmacêutica e produção de novos fármacos. Muitas abordagens in silico distintas para predição de interações droga-proteína têm sido propostas, muitas das quais baseadas em uma classe particular de métodos de aprendizagem de máquina chamada de métodos de kernel. Estes algoritmos de classificação de padrões são capazes de incorporar conhecimento prévio na forma de funções de similaridade, i.e., um kernel, e têm tido sucesso em diversos problemas de aprendizagem supervisionada. A seleção da função de kernel adequada e seus respectivos parâmetros pode ter grande influência no desempenho do classificador construído. Recentemente, a aprendizagem de múltiplos kernels (Multiple Kernel Learning - MKL) tem sido introduzida para solucionar este problema, permitindo a utilização de múltiplos kernels, ao invés de considerar apenas um kernel para uma dada tarefa. A principal motivação para tal abordagem é similar a considerada na combinação de múltiplos classificadores: ao invés de restringir-se a um único kernel, é preferível utilizar um conjunto de kernels distintos, e deixar que um algoritmo selecione os melhores, ou sua respectiva combinação. Abordagens MKL também podem ser vistas como uma estratégia de integração de dados. Apesar dos avanços técnicos nos últimos anos, as abordagens propostas anteriormente não são capazes de lidar com os grandes espaços de interação entre drogas e proteínas e integrar múltiplas fontes de informação simultaneamente. Neste trabalho, é proposto um método de aprendizagem de múltiplos kernels para a combinação não esparsa de kernels na predição de interações em redes droga-proteína. O método proposto permite a integração de múltiplas fontes heterogêneas de informação para a identificação de novas interações, e também pode ser aplicado em redes de tamanhos arbitrários. Além disso, o método proposto pode também selecionar automaticamente os kernels mais relevantes, retornando pesos que indiquem a sua importância na predição de interações droga-proteína na rede em questão. A análise empírica em quatro bases de dados, utilizando vinte kernels distintos indicou que o método proposto obteve desempenho comparável ou superior a todos os métodos avaliados. Ademais, os pesos associados aos kernels analisados refletiram a qualidade preditiva obtida por cada kernel em experimentos exaustivos para cada par de kernels, um indicativo do sucesso do método em identificar automaticamente fontes de informação biológica relevantes. Nossas análises demonstraram que a estratégia de integração de dados é capaz de melhorar a qualidade das interações preditas, e pode acelerar a identificação de novas interações, bem como identificar informações relevantes para a tarefa. CAPES Drug-target networks are receiving a lot of attention in late years, given its relevance for pharmaceutical innovation and drug lead discovery. Many different in silico approaches for the identification of new drug-target interactions have been proposed, many of them based on a particular class of machine learning algorithms called kernel methods. These pattern classification algorithms are able to incorporate previous knowledge in the form of similarity functions, i.e., a kernel, and it has been successful in a wide range of supervised learning problems. The selection of the right kernel function and its respective parameters can have a large influence on the performance of the classifier. Recently, Multiple Kernel Learning algorithms have been introduced to address this problem, enabling one to use multiple kernels instead of a single one for a given task. The main motivation for such approach is similar to the one considered in ensemble methods: instead of being restricted to only one kernel, it is preferrable to use a set of distinct kernels, and let the algorithm choose the best ones, or its combination. The MKL approach can also be seen as a data integration strategy. Despite technical advances in the latest years, previous approaches are not able to cope with large drug-target interaction spaces and integrate multiple sources of biological information simultaneously. In this work, we propose a new multiple kernel learning algorithm for the non-sparse combination of kernels in bipartite link prediction on drug-target networks. This method allows the integration of multiple heterogeneous information sources for the identification of new interactions, and can also work with networks of arbitrary size. Moreover, our method can also automatically select the more relevant kernels, returning weights indicating their importance in the drug-target prediction at hand. Empirical analysis on four data sets, using twenty distinct kernels indicates that our method has higher or comparable predictive performance than all evaluated methods. Moreover, the predicted weights reflect the predictive quality of each kernel on exhaustive pairwise experiments, which indicates the success of the method to automatically indicate relevant biological information sources. Our analysis show that the proposed data integration strategy is able to improve the quality of the predicted interactions, and can speed up the identification of new drug-target interactions as well as identify relevant information for the task 2016-04-22T19:31:30Z 2016-04-22T19:31:30Z 2015-11-09 doctoralThesis https://repositorio.ufpe.br/handle/123456789/16781 por Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
institution |
REPOSITORIO UFPE |
collection |
REPOSITORIO UFPE |
language |
por |
topic |
Inteligência artificial Aprendizado de máquina |
spellingShingle |
Inteligência artificial Aprendizado de máquina NASCIMENTO, André Câmara Alves do Combinação de kernels para predição de interações em redes biológicas |
description |
Redes droga-proteína têm recebido bastante atenção nos últimos anos, dada sua relevância
para a inovação farmacêutica e produção de novos fármacos. Muitas abordagens in silico distintas
para predição de interações droga-proteína têm sido propostas, muitas das quais baseadas em
uma classe particular de métodos de aprendizagem de máquina chamada de métodos de kernel.
Estes algoritmos de classificação de padrões são capazes de incorporar conhecimento prévio na
forma de funções de similaridade, i.e., um kernel, e têm tido sucesso em diversos problemas
de aprendizagem supervisionada. A seleção da função de kernel adequada e seus respectivos
parâmetros pode ter grande influência no desempenho do classificador construído. Recentemente,
a aprendizagem de múltiplos kernels (Multiple Kernel Learning - MKL) tem sido introduzida para
solucionar este problema, permitindo a utilização de múltiplos kernels, ao invés de considerar
apenas um kernel para uma dada tarefa. A principal motivação para tal abordagem é similar a
considerada na combinação de múltiplos classificadores: ao invés de restringir-se a um único
kernel, é preferível utilizar um conjunto de kernels distintos, e deixar que um algoritmo selecione
os melhores, ou sua respectiva combinação. Abordagens MKL também podem ser vistas
como uma estratégia de integração de dados. Apesar dos avanços técnicos nos últimos anos,
as abordagens propostas anteriormente não são capazes de lidar com os grandes espaços de
interação entre drogas e proteínas e integrar múltiplas fontes de informação simultaneamente.
Neste trabalho, é proposto um método de aprendizagem de múltiplos kernels para a combinação
não esparsa de kernels na predição de interações em redes droga-proteína. O método proposto
permite a integração de múltiplas fontes heterogêneas de informação para a identificação de novas
interações, e também pode ser aplicado em redes de tamanhos arbitrários. Além disso, o método
proposto pode também selecionar automaticamente os kernels mais relevantes, retornando pesos
que indiquem a sua importância na predição de interações droga-proteína na rede em questão.
A análise empírica em quatro bases de dados, utilizando vinte kernels distintos indicou que
o método proposto obteve desempenho comparável ou superior a todos os métodos avaliados.
Ademais, os pesos associados aos kernels analisados refletiram a qualidade preditiva obtida por
cada kernel em experimentos exaustivos para cada par de kernels, um indicativo do sucesso
do método em identificar automaticamente fontes de informação biológica relevantes. Nossas
análises demonstraram que a estratégia de integração de dados é capaz de melhorar a qualidade
das interações preditas, e pode acelerar a identificação de novas interações, bem como identificar
informações relevantes para a tarefa. |
author2 |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
format |
doctoralThesis |
author |
NASCIMENTO, André Câmara Alves do |
author_sort |
NASCIMENTO, André Câmara Alves do |
title |
Combinação de kernels para predição de interações em redes biológicas |
title_short |
Combinação de kernels para predição de interações em redes biológicas |
title_full |
Combinação de kernels para predição de interações em redes biológicas |
title_fullStr |
Combinação de kernels para predição de interações em redes biológicas |
title_full_unstemmed |
Combinação de kernels para predição de interações em redes biológicas |
title_sort |
combinação de kernels para predição de interações em redes biológicas |
publisher |
Universidade Federal de Pernambuco |
publishDate |
2016 |
url |
https://repositorio.ufpe.br/handle/123456789/16781 |
_version_ |
1641986988912410624 |
score |
13.657419 |