Análise CFD do núcleo prismático do VHTR com distintos modelos de turbulência e alteração de parâmetros da geometria

O VHTR é um reator nuclear térmico, moderado a grafite e refrigerado por hélio. Para seu desenvolvimento, há a necessidade de utilização de ferramentas computacionais eficientes para a análise de aspectos de modelagem, operação e segurança. A proposta deste trabalho é estudar o comportamento do VHTR...

Full description

Main Author: PAIVA, Pedro Paulo Dantas de Souza
Other Authors: LIRA, Carlos Alberto Brayner de Oliveira
Format: masterThesis
Language: por
Published: Universidade Federal de Pernambuco 2018
Subjects:
Online Access: https://repositorio.ufpe.br/handle/123456789/25465
Tags: Add Tag
No Tags, Be the first to tag this record!
Summary: O VHTR é um reator nuclear térmico, moderado a grafite e refrigerado por hélio. Para seu desenvolvimento, há a necessidade de utilização de ferramentas computacionais eficientes para a análise de aspectos de modelagem, operação e segurança. A proposta deste trabalho é estudar o comportamento do VHTR por meio de análise paramétrica, alterando-se modelo de turbulência, perfil de geração de energia nos blocos combustíveis e a influência de modificações na própria geometria. Busca-se também avaliar a implementação de uma metodologia simplificada que reduza o esforço computacional e a duração de uma simulação. Procedeu-se à análise do escoamento do fluido refrigerante através dos canais refrigerantes e canais by-pass em uma seção de 1/12 de uma coluna de blocos combustíveis, utilizando-se diferentes modelos de turbulência. Os resultados obtidos com essas simulações foram comparados àqueles obtidos por meio de correlações do número de Nusselt descritos na literatura. Observou-se que a simulação na qual se utiliza o modelo 𝑘-ε possibilita a obtenção de resultados que convergem bem com aqueles fornecidos pelas correlações, para ambos os tipos de canais. O modelo 𝑘-ω proporciona bons resultados para os canais refrigerantes e, o SSG, para o canal by-pass. Utilizou-se geometria contendo canais by-pass de diferentes dimensões, além de uma que possuía apenas os canais refrigerantes, sem canal by-pass. Verificou-se que a existência de um escoamento by-pass induz a um aumento no gradiente de temperatura no bloco combustível. Realizaram-se estudos comparativos entre os resultados obtidos em simulações realizadas com diferentes perfis de geração de energia térmica (uniforme e senoidal) nos canais combustíveis. Verificou-se que, quando há a mesma geração de energia térmica total no bloco combustível, a máxima temperatura constatada em cada um dos materiais é menor para o caso da geração de energia com perfil senoidal. Quando utilizado, no perfil senoidal, um fator radial de pico (1,25), há um aumento considerável na temperatura de todos os materiais, possibilitando a ocorrência de regiões em que a temperatura pode ultrapassar o limite usualmente aceito para o combustível do reator (1250°C) em operação normal. O canal refrigerante localizado no centro do bloco combustível tem diâmetro inferior aos demais canais existentes nesse bloco. Para verificar a hipótese de que a existência de um gradiente de temperatura no bloco combustível, com a temperatura mais elevada ao centro e a temperatura mais baixa estando na periferia desse bloco, deve-se fortemente à menor dimensão desse canal central, realizaram-se simulações computacionais utilizando-se uma geometria com canal central de diâmetro igual ao dos demais. A condição de entrada escolhida para essa nova estrutura foi, primeiramente, o mesmo fluxo mássico total e, depois, a mesma diferença de pressão entre entrada e saída verificados na simulação da geometria padrão. Os resultados obtidos confirmam a hipótese aventada. Realizou-se simulação utilizando uma metodologia simplificada, que consiste em uma análise unidimensional do fluido em um canal refrigerante acoplada à análise tridimensional da condução do calor no grafite e nos canais combustíveis. Os resultados obtidos com a metodologia simplificada apresentaram excelente convergência com aqueles obtidos com a simulação completamente tridimensional, e em um tempo de simulação cerca de 45 vezes menor.