Estudo comparativo de algoritmos exaustivos para mineração de padrões discriminativos em bases de dados biomédicas

Um grande desafio do crescimento exponencial dedados no mundo é a extração de conhecimento em bases de alta dimensionalidade. Essa característica é muito comum em bases de domínio biomédico. Uma técnica utilizada para extração do conhecimento é chamada de mineração de Padrões Discriminativos (PDs) q...

Full description

Main Author: SANTOS, Maurício Aldenor Souza dos
Other Authors: VIMIEIRO, Renato
Format: masterThesis
Language: por
Published: Universidade Federal de Pernambuco 2018
Subjects:
Online Access: https://repositorio.ufpe.br/handle/123456789/25850
Tags: Add Tag
No Tags, Be the first to tag this record!
Summary: Um grande desafio do crescimento exponencial dedados no mundo é a extração de conhecimento em bases de alta dimensionalidade. Essa característica é muito comum em bases de domínio biomédico. Uma técnica utilizada para extração do conhecimento é chamada de mineração de Padrões Discriminativos (PDs) que objetiva em contrar informações interessantes que ocorram com frequência desproporcional em uma classe(atributo) em relação as outras. A maioria dos algoritmos exaustivos para mineração de PDstem sidos propostos com o objetivo de solucionar problemas dedados tradicionais de baixa dimensionalidade. Dessa maneira se tornou criticamente necessário investigar se esses algoritmos podem ser aplicados a dados biomédicos de alta dimensionalidade. Esse trabalho tem como objetivo comparar o comportamento das abordagens exaustivas dos PDs em bases reais comum se de alta dimensionalidade. Para isso experimentos foram realizados com os algoritmos APRIORI-SD, SD-Map eRCS, utilizando bases da UCI(Machine Learning Repository) e biomédicas de microarrays. Os experimentos revelaram que os algoritmos não são os mais apropriados as bases biomédicas de alta dimensionalidade, entretanto para um algoritmo houve algum retorno dePD e dois algoritmos tiveram bons desempenho sem bases tradicionais de baixa dimensionalidade.