Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco
This work represents an effort to model the internal dynamics of a manufacturing cluster’s supply chain strategy by computational means, through an agent-based modelling (ABM). As a case study, we have selected an apparel-manufacturing cluster in Pernambuco, Brazil. The cluster’s supply chain strate...
Main Author: | FERRAZ SEGUNDO, Dallas Walber |
---|---|
Other Authors: | SILVA, Maísa Mendonça |
Format: | masterThesis |
Language: | eng |
Published: |
Universidade Federal de Pernambuco
2020
|
Subjects: | |
Online Access: |
https://repositorio.ufpe.br/handle/123456789/37959 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
ir-123456789-37959 |
---|---|
recordtype |
dspace |
spelling |
ir-123456789-379592020-09-15T05:15:21Z Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco FERRAZ SEGUNDO, Dallas Walber SILVA, Maísa Mendonça http://lattes.cnpq.br/1855213394363005 http://lattes.cnpq.br/1719660651640802 Roupas – Confecção – Pernambuco Pequenas e médias empresas Aprendizado do computador Inteligência artificial Logística empresarial This work represents an effort to model the internal dynamics of a manufacturing cluster’s supply chain strategy by computational means, through an agent-based modelling (ABM). As a case study, we have selected an apparel-manufacturing cluster in Pernambuco, Brazil. The cluster’s supply chain strategy was first expressed by means of the Conceptual System Assessment and Reformulation (CSAR) theoretical framework, and then key elements of it were represented as agents, each one embodying a supply chain manager from one of the medium-sized enterprises (ME) in the cluster. Machine Learning (ML) was used to guide the development of these agents, informed and constrained by real data from the cluster. Therefore, the resulting system allows insights on how elements relate to each other, such as the difference between the conceptual and the implemented model, which variables affect the decision-making process of the agents, whether the perceived current market share position matters more or less in budget allocation, which actions would be performed under specific agent temperaments according to demand forecasting and so on. This approach is relevant by virtue of granting not only stress test and sensitivity analysis of impactful factors regarding supply chain management of the ME, but it also avows ad hoc confirmation of theoretical propositions, such as CSAR itself, onto simulated environments. FACEPE Este trabalho representa um esforço para modelar a dinâmica interna da estratégia da cadeia de suprimentos de um arranjo produtivo de manufatura através de uma modelagem computacional baseada no agente. Como estudo de caso, foi selecionado o Arranjo Produtivo Local de Confecções do Agreste de Pernambuco, Brasil. A estratégia da cadeia de suprimentos das empresas do arranjo foi primeiro expressa em forma de sistema conceitual de avaliação e reformulação, do escopo teórico do Conceptual System Assessment and Reformulation (CSAR). Os elementos chave representados na simulação são os agentes, cada um deles figurando como um gerente de cadeia de suprimentos de uma empresa de médio porte do Arranjo Produtivo Local. A técnica de Aprendizado de Máquina foi utilizada para guiar o desenvolvimento destes agentes, limitando-se por dados reais colhidos sobre o arranjo produtivo. Portanto, o sistema resultante permite a observação do relacionamento dos componentes do arranjo, como a diferença entre a implementação do modelo e seu esquema conceitual, a forma como as variáveis afetam o processo de decisão dos agentes, o grau de relevância da percepção da fatia de mercado de uma empresa na alocação de recursos, quais ações devem ser executadas por diferentes perfis gerenciais, entre outros. Esta abordagem é relevante devido não apenas à possibilidade de fornecer uma análise de sensibilidade dos fatores impactantes em relação à gestão de cadeia de suprimentos para empresas de médio porte, mas, também, por permitir modificações e confirmações ad hoc de proposições teóricas, como o próprio modelo CSAR, em ambientes simulados. 2020-09-14T14:57:18Z 2020-09-14T14:57:18Z 2020-03-13 masterThesis FERRAZ SEGUNDO, Dallas Walber. Application of computer simulation for the study of supply chain managerial actions of medium-sized enterprises in the apparel cluster of Pernambuco. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020. https://repositorio.ufpe.br/handle/123456789/37959 eng openAccess Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ application/pdf Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao / CAA |
institution |
REPOSITORIO UFPE |
collection |
REPOSITORIO UFPE |
language |
eng |
topic |
Roupas – Confecção – Pernambuco Pequenas e médias empresas Aprendizado do computador Inteligência artificial Logística empresarial |
spellingShingle |
Roupas – Confecção – Pernambuco Pequenas e médias empresas Aprendizado do computador Inteligência artificial Logística empresarial FERRAZ SEGUNDO, Dallas Walber Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco |
description |
This work represents an effort to model the internal dynamics of a manufacturing cluster’s supply chain strategy by computational means, through an agent-based modelling (ABM). As a case study, we have selected an apparel-manufacturing cluster in Pernambuco, Brazil. The cluster’s supply chain strategy was first expressed by means of the Conceptual System Assessment and Reformulation (CSAR) theoretical framework, and then key elements of it were represented as agents, each one embodying a supply chain manager from one of the medium-sized enterprises (ME) in the cluster. Machine Learning (ML) was used to guide the development of these agents, informed and constrained by real data from the cluster. Therefore, the resulting system allows insights on how elements relate to each other, such as the difference between the conceptual and the implemented model, which variables affect the decision-making process of the agents, whether the perceived current market share position matters more or less in budget allocation, which actions would be performed under specific agent temperaments according to demand forecasting and so on. This approach is relevant by virtue of granting not only stress test and sensitivity analysis of impactful factors regarding supply chain management of the ME, but it also avows ad hoc confirmation of theoretical propositions, such as CSAR itself, onto simulated environments. |
author2 |
SILVA, Maísa Mendonça |
format |
masterThesis |
author |
FERRAZ SEGUNDO, Dallas Walber |
author_sort |
FERRAZ SEGUNDO, Dallas Walber |
title |
Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco |
title_short |
Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco |
title_full |
Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco |
title_fullStr |
Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco |
title_full_unstemmed |
Application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of Pernambuco |
title_sort |
application of computer simulation for the study of supply chain managerial actions of medium-ized enterprises in the apparel cluster of pernambuco |
publisher |
Universidade Federal de Pernambuco |
publishDate |
2020 |
url |
https://repositorio.ufpe.br/handle/123456789/37959 |
_version_ |
1680625228739248128 |
score |
13.657419 |