Fluidos magneto-micropolares : existência global de solução forte e decaimento na norma L² para soluções fracas
Estudamos o problema de Cauchy para o sistema de equações que modelam o movimento de um fluido magneto-micropolar incompressível 3D. Tais equações representam uma generalização do clássico modelo de Navier-Stokes e descrevem o comportamento de fluidos commicropartículas levando-se em consideração a...
Main Author: | NOVAIS, Michele Mendes |
---|---|
Other Authors: | CRUZ, Felipe Wergete |
Format: | doctoralThesis |
Language: | por |
Published: |
Universidade Federal de Pernambuco
2020
|
Subjects: | |
Online Access: |
https://repositorio.ufpe.br/handle/123456789/37699 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: |
Estudamos o problema de Cauchy para o sistema de equações que modelam o movimento de um fluido magneto-micropolar incompressível 3D. Tais equações representam uma generalização do clássico modelo de Navier-Stokes e descrevem o comportamento de fluidos commicropartículas levando-se em consideração a presença de um campo magnético. Elas descrevem fenômenos vindo de vários fluidos, tais como sangue humano e de animais, suspensões poleméricas, cristais líquidos, librificantes, ferrofluidos, entre outros. Neste trabalho, em um primeiro momento, através de estimativas de energia, obtivemos a existência e unicidade de uma solução forte local do problema em questão. Em seguida, impondo uma condição de pequenez sobre os dados iniciais, mostramos que a solução forte existe globalmente. Em um segundo momento, obtivemos, via o método de decomposição de Fourier (Fourier splitting method), taxas de decaimento temporal para as soluções fracas deste sistema. Por fim, através de um argumento mais direto (método da representação integral ou princípio de Duhamel), melhoramos a taxa de decaimento para a velocidade micro-rotacional. |
---|